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Talk Outline

• Scaling Through Wavelength Reduction
• We must make wavelength reduction work, DSA augments 

lithographic imaging
• CA resist design allows weak source to be utilized
• Polymer and PAG design have met the challenge in previous 

generations
• Polymer-bound PAG offers lower blur CA resist

• Low Diffusion Resist Design that has resolution, sensitivity and LWR
• Anion- bound PAG lithographic polymers enable 20-nm 

lithography, can we extend to sub-20nm? 
• Improve resist quantum yield, resist absorption and density, 

reduce acid blur 

• LWR improvement through improved acid quantum yield, resist 
absorbance

• Models show resist with high acid quantum yield and higher 
resist absorbance improves LWR

• Substrate optimization for LWR and PCM
• Pattern Colllapse Margin improved with substrate optimization 

for CTE and surface energetics
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Imaging at Different Wavelengths
Requires Different Photoresist Chemistry

Resist Transparency dominates earlier wavelengths

Acid Diffusion dominates EUV CA resists

Attaching PAG anion is a clever way to reduce diffusion but adds polymer complexity
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Concept:   Polymeric-bound PAG  [PBP]
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Benefits of Polymer-bound PAG Approach

• Limits PAG outgassing:   covalent attachment of PAG to polymer 
reduces small molecule evolution from Resist

• Allows Effective Higher Loading of PAG without aggregation or 
phase separation

• Forces a more uniform distribution of PAG in the resist film

• By attaching the PAG anion to the lithographic polymer, photoacid
diffusion is limited by polymer chain mobility

• Can be used in 193nm, EUV, or ebeam lithography for ultra-high 
resolution where throughput is an  issue
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THE NEXT CHALLENGE:  EUV
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Critical Challenges for EUV Resists

Challenge Areas to work on

Fundamental EUV interaction with Resist 

Material

Electron blur, line slimming, negative 

resist behavior, acid yield

Resolution Polymer-bound PAG, low activation LG, 

swelling reduction, acid blur

LWR Polymer-bound PAG, etch trim, rinse, 

polymer homogeneity

Photospeed EUV sensitization, higher PAG loading

Etch Resistance Lower Ohnishi parameter approach

Pattern Collapse Lower A/R, UL matched for adhesion, 

surfactant rinse

Outgassing PAG byproducts from ionization, LG and 

solvent effects, other species?

Defects HSP solvents, aggregation elimination

Quality Control EUV photospeed test, EUV chemical 

signature requirement
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EUV RESIST OUTGASSING
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EUV Fundamental Studies - Outgassing

• Reduced Outgassing

• Cation change reduces outgassing 4x

• No DPS fragments (186amu)

• No fragments from ~120-200amu

Outgassing - RGA
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Outgassing and Contamination

-Sublimation and condensation results in contamination of optics and mask

-Expensive – much more expensive than 193 and 248 tools

Ellipsometry X-Ray Photoelectron

Spectroscopy (XPS)
RGA

TPS is problematic
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Witness Plate Results

• Extremely low reflectivity loss after atomic H cleaning

• Low Diffusion PBP Resist meets the NXE requirements 
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OUT-OF-BAND RADIATION
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Out-of-Band (OOB) Radiation Problem

• EUV Sources Emit Electromagnetic 
Radiation from 100 -300 nm wavelength

• From the graph, 200nm energy

~8x-15x less than 100nm energy

• Most if not all resists for EUV use PAGs 
that are designed for 193nm and 
248nm exposure

• Could the OOB radiation cause 
thickness loss at the top of resists?

• Could OOB radiation cause LWR?

LPP Sn-based Source
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Upcoming EUV DOE

Recent Improvements on OOB - Improved PAG Design

• >15 New PAGs were Screened for OOB 

• Identified Several New Promising Candidates for Formulation Optimization

• These improvements will be Incorporated Future Litho DOEs
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LWR IMPROVEMENT
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How to Reduce EUV Acid Uncertainty  [true 
source of LWR]?
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What Stochastic modeling tells us about 
EUV Resist Improvement

• Shorten Acid Diffusion Length

• Increase PAG Loading (density)

• Higher PAG density leads to higher sensitivity which means more 
quencher which is good for LWR

• Increase Photoelectron Generating Efficiency

• Use polymer matrix that easily yields electrons  ( Low electron 
affinity polymers)

• Increase Resist Absorption

• Use fluorinated monomers, use methacrylate monomers ( only 
20% EUV photons absorbed at 40nm FT )

• Increase C( acid yield)

• Improve EUV response of PAG vs OOB response

• Attach electron accepting groups to PAG
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Increasing PAG density
25nm 28nm 30nm
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Low PAG density

LWR = 5.2nm

Med PAG density

LWR = 3.8nm

High PAG density

LWR = 3.1nm



®

Image Log-Slope and Exposure Latitude

• For an infinite contrast resist,

• For example, for a ±10% CD specification,
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22.2nm

11.8mJ

3.8nm LWR   

Dipole Data of Low Diffusion Resist

19.1nm

11.8mJ

7.6nm LWR   

28nm 26nm 24nm 22nm 20nm

eMET (11.8mJ)

BMET (~16.8mJ) 

XU090640BB 

SB/PEB  110C/100C 

FT=50nm

24nm HP 20nm HP

Acid diffusion length  =  8nm

Resist:

Resist Film Thickness=450Å

SB=130°C/90s; PEB=100°C/60s

ARC:    UL B

EXP:     eMET Albany

NA=0.30; Dipole

Mask; H/V Cleave

DEV:     TEL-SMT-30S=TMAH, 30s
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Control
1.74nm CDU( 5 die avg)

Sample-A
1.44nm CDU( 5 die avg)

Sample-B
1.54nm CDU( 5 die avg)

Sample-C
1.44nm CDU( 5 die avg)

Results of Recent C/H Evaluation at LBNL (30nm 1:1 C/H) 

Identified Improved Formulations

MA
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EUV RESIST SUBSTRATE 
DEPENDENCE
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Substrate Choice for EUV Resist

• Silicon HM material

» Advantages: good for etch integration,  use ArF formulations to 
help with OOB minimization

» Challenges:  Resist poisoning, stability, surface energy 
matching, developer penetration, CTE

• Organic UL

» Advantages:  universal substrate, chromophore inclusion for 
OOB minimization,  ultrathin coatings possible 

» Challenges:  etch selectivity,  surface energy matching, CTE

• Direct on Substrate

» Advantages: reduced coat steps

» Challenges:  individual resists for different substrates [resist 
complexity], no  OOB minimization, etch recipe optimization
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28nm HP Overexposure Margin 50nm FT 
(Si  HM, ORG UL, Primed Si)
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20.6nm

Resist: 

Resist Film Thickness=500Å

ARC:    Control UL; 205°C/60s

Resist:

Resist Film Thickness=500Å

ARC: Control Si HM

22.9nm 21.0nm

19.1nm

20.0nm

Resist:

Resist Film Thickness=500Å

Primed Si
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Low Diffusion Resist Performance on Si-HM vs Organic UL

13.35mJ +5%-5%

13.35mJ +5%-5%

(70nm FT) 

27.9nm/13.4mJ/3.6nm LWR

(70nm FT) 

26.9nm/13.4mJ/3.2nm LWR

~22nm CD

Organic UL

~26nm CD

on Si Hardmask
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EUV, EBEAM AND 193 CAPABILITY OF 
PBP
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Prospects for the Future

Ultimate Resolution of PBP CA resist

Ultimate Resolution of EUV PR with e-Beam

- 15nm hp Resolution with PBP Platform

Not resolution limited—

Pattern Collapse limited!

EUV dipole

20nm hp

193 annular

38nm hp



®

EUV Resist Development Status

• PBP-based resist remains the lead candidate for EUV lithography

• Steady progress in acid yield, absorbance, OOB, outgassing, 
substrate optimization continues

• Steady progress in LWR continues

• Resolution is currently 19nm hp by EUV, 15nm hp by ebeam---
limited by pattern collapse and LWR not resolution!!

• Source improvements will improve stochastic effects leading to 
better resist performance

• Optics and mask improvements will improve aerial image leading 
to better resist performance
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